
City Cam: Similarity based classification of vehicle count
time series

Tomás Matos Fernandes da Cunha Cordovil

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. João Paulo Salgado Arriscado Costeira
Prof. Carlos Jorge Andrade Mariz Santiago

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. João Paulo Salgado Arriscado Costeira

Member of the Committee: Prof. Pedro Manuel Quintas Aguiar

November 2021



ii



Affidavit

I hereby declare that the present document is an original work authored by me and that it abides to the

requirements of the code of conduct and good practices of the University of Lisbon.
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Abstract

Classification of traffic patterns based on images. With a rise of utilization of vehicles in an urban context

it also becomes increasingly important to be able to understand how traffic density varies in time.

Traffic surveillance cameras are a widespread and relatively cheap tool that can be used to analyse

these traffic patterns. Image processing in a traffic context presents its own challenges.

We propose a method of converting the sequence of images acquired by traffic cameras into traffic

state classification. The main contribution of this work is the application of Sparse Subspace Clustering

algorithm to describe the traffic flow.

Vehicle counts are first extracted from the images. Vehicle density estimation through deep learning

is employed to avoid using detection methods. The sequence of vehicle counts, segmented in same

sized intervals, is fed to an optimization program which returns a sparse subspace representation of

the data. This alternative representation allows the definition of a similarity measure. Considering a

segment of vehicle counts as a node, and the similarity between two nodes being the weight of an

edge connecting them, the data can be viewed as a graph. We apply spectral clustering to this graph

to obtain classifications. The error values returned in the optimization program are indicators of how

unique a segment is, easing the detection of anomalies in traffic density patterns.

There is no metric to analyze the results of this process, so a qualitative analysis is performed to

evaluate the obtained results.

Keywords: traffic, image, density estimation, sparse subspace clustering, subspace represen-

tation, classification
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Resumo Analı́tico

Classificação de padrões de trânsito baseado em imagens. Com o aumento da utilização de veı́culos

também se torna cada vez mais importante compreender como a densidade de trânsito varia com o

tempo.

Câmaras são ferramentas bastante difundidas e baratas que podem ser usadas com o intuito de

analisar estes padrões de trânsito. Mas o processamento de imagem, no contexto de trânsito, tem

dificuldades associadas. A principal contribuição deste trabalho é a aplicação do algoritmo de Sparse

Subspace Clustering para caracterização do fluxo de veı́culos.

Propomos um método para converter sequências de imagens capturadas por câmaras em classificações

de estado do trânsito.

A contagem de veı́culos é extraı́da da imagem. Usa-se ”deep learning” para obter estimativas de

densidade de veı́culos numa imagem. A sequência de contagem de veı́culos, segmentada em partes

de tamanho igual, é processada por um programa de optimização que devolve uma representação

esparsa em sub-espaços dos dados. Esta representação dos dados permite a definição de uma métrica

de semelhança. Considerando um segmento de contagens de veı́culos como sendo um nodo, e a

semelhança entre dois nodos sendo o peso da aresta que os liga, a nova representação pode ser

usada como um grafo. Aplicamos spectral clustering a este grafo de modo a obter classificações. O

erro retornado no programa de optimização é indicador de quão singular um segmento é, facilitando

detecção de anomalias em padrões de densidade de trânsito.

Não havendo métricas para análise dos resultados deste processo, fez-se uma análise qualitativa

para poder avaliar os resultados obtidos.

Palavras chave: trânsito, imagem, estimação de densidade, sparse subspace clustering,

sub-espaço, classificação
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Chapter 1

Introduction

1.1 Objectives

Video cameras are a widespread tool for traffic monitoring by being mounted in roads, city streets,

intersections and parking lots. As they are active at all times, these cameras generate a lot of data

through the continuous acquisition of images. These images can be processed to obtain key indicators

such as the number of cars per frame, or traffic density which is defined as the number of vehicles per

unit of area of the road. Having a large record of these densities can enable the extraction of traffic

patterns. Moreover, if a recurrent traffic density pattern can be found, anomalies can be more easily

identified. In itself, the identification of traffic anomalies can help to infer if and how the anomaly will

affect traffic in the other points in space and allow a faster response.

This thesis’s objective is to process still image data to obtain both vehicle count and traffic density

estimations which in turn are used to generate traffic descriptors. Using the obtained descriptors, a

Sparse Subspace Clustering algorithm is applied ti them. The algorithm can be broken down into two

steps: a sparse subspace representation method is used to reduce the dimensionality of the cumulative

information obtained from images, followed by a clustering technique to classify time intervals of real

data in terms of its traffic characteristics. Finally, analyse this clustering to find similarities between time

segments of a single or multiple cameras. More specifically, we make use of Tallinn’s camera network as

a data source. As inferring vehicle counts from images is a problem that has already been investigated

in the past, the main contribution of this work is the application of the Sparse Subspace Clustering

algorithm to obtain a classification of vehicle count time series.

1.2 Motivation

With the present and assumed future rapid growth of inhabitants of urban areas, the number of road

vehicles in these areas also witnesses a substantial increase. A direct result of this is a rise in the

frequency of occurrences of traffic congestion situations. Since mobility in urban scenes is becoming

more and more relevant because of its impact in the economy and the environment, being able to better
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Figure 1.1: Main thesis steps.

characterize and predict traffic can be a valuable tool to improve circulation. Being able to classify traffic

state in several points in a city can lead to a faster identification of unusual behaviours and help both

individuals and governments to react faster to them. Traffic statistics can also help in finding interrelation

between fixed locations if a connection can be found between their data collections.

Traffic characterization can have positive implications in congestion management as it can help in route

planning, deciding best departure time, trip duration estimation and infrastructure management. To be

able to perform this, traffic data acquisition is necessary, and finding a reliable source is a problem on

its own. It is possible to obtain information regarding traffic with many devices, for example through loop

detectors, piezoelectric sensors, radars, GPS devices ([1]) and cameras. Cameras have seen a peak in

interest as it is the option which has yielded the best results in detecting cars. Moreover, camera based

counting is a tool which has seen applications in other fields such as crowd counting, agricultural control

and medical imagery.

Difficulties in obtaining vehicle counts appear when we try to accomplish this task based on typical

surveillance videos as they can have low frame-rate, large perspective, changing background and point

of views in their acquisition.

1.3 Work Highlights

This thesis’s main objective is to classify traffic time intervals using a Sparse Subspace Clustering al-

gorithm. The original data are images obtained from traffic surveillance cameras. Vehicle counts are

extracted from images using a neural network. Its input are images and its output are density maps

with a sum of pixel values equal to the number of vehicles contained in it. Pre-processing is applied to

the data in order to obtain the desired format for the following steps. Then, an alternate representation

of the series of vehicle counts is generated through the use of an optimization program. This alternate
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representation consists in expressing a sequence of vehicle counts as a sparse linear combination of

other sequences of vehicle counts. Thus, each of those sequences can be reconstructed with that linear

combination added to a reconstruction error. With this alternative representation of the data, a similarity

metric is obtained. The collection of similarity values between pairs of vehicle count sequences is in

fact a graph, where each sequence of vehicle counts is a node and the similarity between two nodes is

the weight of the edge connecting them. With the data now converted to a graph, it is possible to apply

graph clustering methods which will classify time intervals of traffic.

The rest of this thesis will be organized into five chapters. In Chapter 2, we will introduce the state

of the art. Chapter 3 contains a description of how vehicle counts are extracted from images. Chapter 4

explains how vehicle counts are classified. Chapter 5 is a real-life application of the proposed method,

including a description of the acquisition of data. Chapter 6 describes the achievements of this thesis

and possible future work.

3
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Chapter 2

Related Work

In this chapter we review literature related to the two main parts of this project, namely counting in

computer vision and clustering. In counting literature we will focus on image segmentation and density

estimation. We will also provide a general view of the deep learning methods used in these contexts. In

clustering we will introduce subspace representation methods and relevant clustering techniques.

2.1 Counting

Counting, in a computer vision context, consists in the estimation of the number of instances of an object

in an image ([2]). Counting has a wide range of applications, from counting cars in a traffic surveillance

context ([3]), to microscopy cells in medical imagery ([4]), trees in an agricultural control ([5]), crowd

counting, and others.

With such a wide spectrum of possible applications, many methods have been developed in the course

of the years to solve this problem. We can divide these methods into two categories: detection based

methods and regression based methods ([6] [7]).

2.1.1 Detection Based Methods

Detection based methods rely on locating desired objects in an image to directly obtain an estimate

number of their instances. This class encompasses morphological operations, transforms, image en-

hancement techniques, edge and contour detection and segmentation methods.

Segmentation itself is a task which consists in the grouping or classification of all pixels of an image.

There are two types of image segmentation: semantic segmentation and instance segmentation. The

main difference between these two is that in semantic segmentation, pixel classification is conducted

immediately indicating if this pixel belongs to an object of a specific class without specifying boundaries

between objects of the same class. While in instance segmentation, instances of that class are identified

separately thus enabling the detection of every object by finding all its pixels in that image. This method

(instance segmentation) will delineate the objects boundaries, allowing for a counting and localization of

all objects([8], [6]).
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Instance segmentation is used often in surveillance, crowd segmentation and cell segmentation ([9],

[10]).

One of the main advantages of this method is that it gives spatial information on the objects, this will

permit, for example, the tracking an instance of an object between frames or maybe even an estimation

of real life distances. However, detection is a very hard task (there still is work being developed in

this area), plus, it does not deal very well with occlusion or low resolution ([11]) and tracking becomes

impossible when image acquisition has a low frame rate.

2.1.2 Regression Based Methods

Contrary to detection, regression is a method which makes use of image features, such as color his-

tograms, texture or foreground pixel area ([12], [13]), to directly obtain an estimate of the number of

instances of an object in an image. It is most useful in tasks where spatial information is not needed

(as no object detection is used) and the input image has low quality or is overcrowded ([14]), such as in

crowd or microscopy cell counting.

Based on this concept, the authors of [6] proposed a new method for counting based on regression:

image density estimation which still retains spatial information from the original image. The authors do

so by procuring a density function F which, when integrated over the entire image, outputs a density

map representing the density of instances of objects in each pixel and whose integral outputs the count

in that image.

2.1.3 Deep Learning

In recent years, deep learning methods have seen a rapid increase in their usage, and have been applied

in a variety of contexts including image processing. A special interest in Convolutional Neural Networks

(CNN or Convnets) has peaked as these have yielded excellent results in this field ([15]). They have

been used for image classification ([16], [17]), detection ([18], [19]), segmentation ([20], [21], [22]) and

count regression ([5]). Many variations of CNN have since been proposed, such as the You Only Look

Once (YOLO) [23], U-Net ([24]) and others.

In the same microscopy cell counting context as mentioned in section 2.1.3, the authors of [4] consider

a training set composed by a cell microscopy image and its corresponding density map and make use

of a Fully Convolutional Neural Network (FCNN) to solve the density estimation problem. Their solution

produced fast and accurate results.

Another example is the You Only Look Once or YOLO network. YOLO is a region proposal CNN used

for object detection and classification which treats detection as a regression problem. This architecture

has been applied to traffic counting ([25], [3], [26]) with very promising results. It works by dividing an

image into a grid and proposing a classification and a bounding box for each cell grid. Although it is very

fast, it has problems when dealing with low resolution, small objects or occlusion.

U-Net is a fully convolutional neural network commonly used for image segmentation. It follows the basic

form of an auto encoder: a symmetrical architecture composed of a contracting side and an expanding

6



side. It has the particularity of forwarding the result of the convolution blocks from the contracting side

to the expanding side. This forwarding is referred to as skips. Although it is mostly used in a biomedical

context, it has also been used for vehicle counting tasks.

Another CNN architecture used for vehicle counting is proposed in [27]. Using a different method,

the network proposed in that paper still combines features extracted from shallow layers (appearance

features) with the ones extracted from deeper layers (semantic features). The authors of [27] affirm this

helps producing denser feature maps thus solving the problem of reduced spatial resolution.

2.2 Clustering

Clustering is the task of grouping a set of objects in such a way as to maximize or minimize a specified

metric. Objects inside the same cluster tend to be more similar (according to the predefined metric)

between them than objects from different clusters. Clustering is crucial when trying to detect underlying

patterns in data.

Many techniques have been developed over the years and they are used in a wide variety of research

fields, including traffic analysis. In this context, they can be implemented with different objectives, de-

pending on the input data, such as clustering the trajectories of vehicles in a sequence of images to

better understand traffic flow in an intersection (see [28]). Another example of application is [29] where

the authors try to classify traffic states of a single location, whereas in [30], the authors analyze data

from a large network of road segments and try to identify spatial traffic prediction patterns. In sum, there

is a multiplicity of ways of applying clustering techniques in a traffic analysis context. The methods which

seem to appear recurrently are k-means and fuzzy C-means.

K-means is an unsupervised clustering method which aims to partition a population into k clusters

such that, each point belongs to the one cluster whose centroid it is closest to. It minimizes within cluster

variance, or inertia, by optimizing equation 2.1.

J(X,C) =

n∑
i=1

K∑
j=1

mi,j ||xi − cj ||2 (2.1)

This is accomplished by iteratively calculating the mean of all clusters and attributing to a cluster, all

points which are closer to it. After changing the composition of the clusters, its new mean is recalcu-

lated, and the process continues [31]. Although this method does not necessarily converge to a global

optima, it always converges to a local optima. It is a non-deterministic method which depends on the

initialization. Here, initialization is the process of defining the clusters before starting the iteration. Two

popular initialization methods are for example: defining initial clusters as k samples chosen at random

from the original samples (Forgy method), or, randomly assigning a cluster to every data point (random

partition), as described in [32]. Overall, the K-means algorithm consists in three steps. Step one is

initialization, we specify K, the number of clusters, and define what are the initial clusters based on

the chosen method. Step 2 is assigning membership to every datapoint, which requires computing the

euclidean distance from every point to each cluster center. As in K-means, each point can only belong
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to one cluster (hard clustering), membership m is expressed as seen in equation 2.2.

m(cl, xi) =


1, if l = argmin

j∈1, ..., k
(||xi − cj ||2)

0, otherwise
(2.2)

A datapoint will be assigned to the cluster to whose center it closest to.

Step 3 is recalculating the center of every cluster based on the newly assigned memberships. This

center or centroid is calculated as a mean of all the datapoints which compose it as seen in equation

2.3.

cj =

∑n
i m(cj , xi)xi∑n
i m(cj , xi)

(2.3)

Steps 2 and 3 are then repeated until convergence or maximum stipulated number of iterations is

attained. Because this algorithm is dependent on initialization, it is often done several times with different

initializations.

Fuzzy C-means [33] is an adaptation of K-means algorithm, which, unlike its counterpart, allows

datapoints to partly belong to each of the existing clusters. It minimizes the within-groups sum of square

errors function seen in equation 2.1 but with a different membership function and a different way of

calculating cluster centers. The membership function for this method can be seen in equation 2.4.

mi,j =
1∑K

k=1( dikdjk )
2

m−1

s.t.

K∑
j=1

mi,j = 1

(2.4)

The centers are calculated with the expression in equation 2.5.

cj =

∑n
i m(cj , xi)

mxi∑n
i m(cj , xi)m

(2.5)

The hyper-parameter m, called the fuzziness index, that controls the extent of sharing among fuzzy

clusters [34]. The higher it is, the fuzzier the cluster will be in the end. Its value is usually set to two, but

the decision is mostly case specific.

Fuzzy c-means seems to be a better choice than k-means when there are overlapping clusters [35].

Although these two are some of the most used methods, many others are relevant in traffic analysis

context. The choice of clustering method depends mostly on the type of data. So, with the appropriate

processing, any clustering method should be applicable to this context.
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Chapter 3

Counting Framework

3.1 Introduction

The number of vehicles at given time and place is one of the relevant characteristics of traffic. Vehicle

counts need to be extracted from whichever data source is available. This chapter describes how vehicle

count is obtained from a still image or a video frame.

In vehicle counting using traffic cameras we are commonly faced with two major problems: low image

quality and high occlusion. Both of these traits make it very difficult to detect objects in images, so, we

entirely avoid detection based methods. Instead, we use a regression based method which still makes

use of the spatial information in the image. This method has already been applied to the context of

vehicle counting in images (see [7]). Counting is formulated as density map estimation. The estimator

Θ, transforms an input image I into its corresponding estimated density map D̂:

D̂ = Θ(I), I ε RH×W×C , D̂ ε RH×W (3.1)

H and W are the height and width of the input image and C is its number of channels. A density map

is an alternative representation of the image where the integral over a segment of the map returns the

number of objects contained in the corresponding image segment. As Figure 3.1 shows, in the case

of digital images, the sum of the pixel values in a density map should return the object count in the

analogous image with the constraint that the sum of pixels which represent one car, must return one.

Given its unbeatable performance, we relied on CNN’s to estimate the regressor. This network is

employed to directly transform an image into its corresponding vehicle density map which also allows

the estimation of the number of vehicles in the image. A more detailed description of the neural network

is provided in the 3.2 section. To recover an overall car count in an image, the corresponding density

map output of this network is then integrated.
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Figure 3.1: Example of annotated image and corresponding ground truth density map

3.2 The U-Net

Following the appreciation in Section 3.1, we use a U-Net architecture to solve the density estimation

problem. This network is composed by an encoder (contracting side), a decoder (expanding side) and

feature combination at multiple levels.

In total, the implemented network comprises 9 basic convolution blocks (ConvBlocks), max-pooling and

transposed convolution layers between them and one final convolution layer.

Figure 3.2: U-Net architecture

The term convolution block refers to a set of 4 layers and 2 activation functions. These layers are

organized as two sets of convolution layers each followed by one rectified linear unit (ReLU) and one

batch normalization layer. All convolution layers in every ConvBlock of the network use a 3x3 kernel and

a stride of 2.

The contracting side is composed of 5 sequential convolution blocks, which we will individually designate

by DownBlock(i), with i = 1, 2, ..., 5. This side uses a total of 4 max-pooling layers (with stride 2 and
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kernel size 2x2), one between each DownBlock. DownBlock(i) has 25+i output channels, so, 64, 128,

256, 512 and 1024 channels respectively in their convolution layers.

The input of DownBlock(1) should be an RGB image with 224 by 224 pixels and three channels (cor-

responding to the three colors). For the following blocks, i = 2, 3, 4, 5, the input is the output of the

MaxPool layer of DownBlock(i-1).

The decoder side is formed by 4 transposed convolutions, each followed by a ConvBlock. We will des-

ignate this sequence as UpBlock(j), with j = 1, ..., 4. At the end there is one final convolution to obtain

the desired number of output classes (output channels is the number of classes). The transposed con-

volution layers use a 2x2 kernel and a stride of 2. The last convolution layer uses a kernel of size 1

and a stride of 1. Any UpBlock(j) has 211−i input channels and 210−i output channels The input of Up-

Block(1) is the output of DownBlock(5) concatenated with the output of the MaxPool layer at the end of

DownBlock(4). For every single other UpBlock(j), with j = 2, 3, 4, the input is the output of UpBlock(j-1)

concatenated with the output of the MaxPool layer at the end of ConvBlock(5-j).

In the end, the structure of the neural network is as is shown in 3.2.

It contains a total of 31 043 520 trainable parameters.

The desired output representation of a vehicle is the equivalent of convolving its bounding box with

a Gaussian Normal kernel. If a pixel is inside the bounding box of multiple vehicles, its contribution to

each will add up. The value Vp of each pixel p in the ground truth density image D used is given by 3.2.

Vp =
∑
b

1

2πσ2
e−

1
2 (

(X−Xc)2+(Y−Yc)2

σ2
) (3.2)

In 3.2, we use X and Y as the coordinates for pixel p and Xc and Yc the coordinates of the center of

each bounding box b in which p is contained for a given image.

The loss function for this network takes into account the loss between ground truth and the estimated

density map and the loss between the labelled number of vehicles and the estimated vehicle count (see

3.6). The total loss is given by 3.3.

L = Lcount + Ldensity (3.3)

Ldensity =
1

n

∑
n

∑
p

(Vp − V̂p)2 (3.4)

Lcount = |CI − ĈI |2 (3.5)

Having obtained the estimated density map D̂ using our estimator Θ, the sum of the value of each

pixel p should return the estimated number of vehicles Ĉ in an image I. This idea is represented in

formula 3.6.

ĈI =
∑
p

V̂ p, p ε DI (3.6)
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3.3 Analysis

The dataset used to train the network is composed of 60 000 annotated images. These images come

from 16 web cameras in Manhattan which acquired videos at a rate of around one frame per second.

The annotations contain vehicle bounding box coordinates for each frame which were used to generate

the ground truth density maps. The number of bounding boxes was used to directly infer the number of

vehicles in each frame. These bounding boxes can be seen in Figure 3.1.

Figure 3.3: Example of inference over an image from training dataset in New York

To analyse the results of the neural net after being trained, an experiment was set up. This experi-

ment consisted in collecting all images from dataset 1, where ground truth vehicle count was equal to

some variable k, and process them with the U-Net. This experiment was repeated for

k ∈ [0, 1, 5, 10, 15, 17, 20, 25, 30] (see table 3.1). This was done to try and ascertain whether the

results of the network’s inference were more affected by the number of training samples for a certain k

or the occlusion inherent to a great number of vehicles in an image. An example of an inference over an

image from the training dataset can be seen in Figure 3.3

G. Truth Mean Std. Min. Max. Median Perct. 25-75 Perct. 5-95 Samples

0 -0.029 0.093 -0.109 0.731 -0.047 -0.058 : -0.033 -0.069 : 0.043 186
1 0.941 0.140 -0.019 2.295 0.932 0.899 : 0.967 0.811 : 1.127 878
5 4.899 0.339 2.815 14.59 4.904 4.816 : 4.998 4.553 : 5.198 2033
10 9.857 0.714 3.820 19.44 9.904 9.775 : 10.01 9.287 : 10.27 2936
12 11.87 0.806 5.447 22.30 11.90 11.78 : 12.02 11.26 : 12.30 3280
15 14.76 0.931 6.173 24.39 14.89 14.75 : 15.01 13.98 : 15.24 2989
17 16.74 0.914 8.667 24.03 16.89 16.73 : 17.02 15.48 : 17.27 2299
20 19.70 1.041 9.631 24.04 19.90 19.73 : 20.04 18.12 : 20.32 1784
25 24.75 1.006 16.83 28.92 24.91 24.78 : 25.05 23.64 : 25.34 767
30 29.69 1.359 20.80 32.33 29.93 29.77 : 30.09 28.11 : 30.48 444
35 34.87 0.564 30.85 36.62 34.94 34.77 : 35.10 34.33 : 35.34 177

Table 3.1: Results of inference in training dataset

In this table we present the ground truth values of vehicle count in an image used in the experi-

ment above explained. Each row contains the mean, standard deviation, median and the number of

samples tested in each case. It also includes the intervals which contain fixed percentages of the total

13



inferred counts for that experiment. These intervals are presented in order to show the inference values

distribution succinctly without visual aid.

The neural network generally undershoots by a small amount the amount of vehicles in an image.

The standard deviation seems to steadily increase with the number of cars in the image, this may be

an indication that the results are more affected by occlusion than by the number of examples with k

vehicles it is fed. In all the tested cases, most samples are very close to the median. Still there seem

to exist cases where the inferred result is wrong by a large margin. To better understand what caused

these errors, the images for which results were farther from the ground truth count were analysed. When

referring to results we are strictly speaking in terms of estimated number of vehicles.

When the images with estimated count high above ground-truth where checked, a lot of them con-

tained large busses which occupied a large portion of the image. Even though these were not even

recognized as vehicles, there was an apparent excessive overestimation of the number of vehicles (see

Figure 3.4). The error mostly came from identification of cars which were in the image but not in the

annotations. This may be due to the fact that the annotations only contain bounding boxes for vehicles

inside a certain area of an image but the image itself is not masked when used for inference (see Figure

3.5).

Figure 3.4: Example 1 of overestimation of number of vehicles

When the opposite case was analysed (predictions much below ground-truth), we found similar errors

as the annotated images contained bounding boxes for vehicles which are barely recognisable as such,

even for a human. This included cases where only a fraction of the vehicle was in the frame (see Figure

3.6) and others caused by high occlusion or bad lighting of the scene (see Figures 3.6 and 3.7).

In summary, starting from a sequence of images or video, we are able to produce a stream of data

of counting estimations over time as shown in Figure 3.8
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Figure 3.5: Example 2 of overestimation of number of vehicles

Figure 3.6: Example 1 of underestimation of number of vehicles

Figure 3.7: Example 2 of underestimation of number of vehicles
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Figure 3.8: Example vehicle count estimations based on image acquisition of one camera on
24/07/2020
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Chapter 4

Clustering

In this chapter we explain how vehicle count estimations generated with the method described in Chap-

ter 3 are processed and clustered. Data acquisition was not linearly spaced and the data itself is noisy.

Since for every cam multiple days were acquired, each containing a number of data points, the accumu-

lation of vehicle counts form a high dimensional space. With this increase the dimensionality of data, the

computational complexity of its analysis grows. The objective of this chapter is to process data, making

it linearly spaced and with less fluctuations. Then, to find a low rank approximation of the high dimen-

sional space in which that descriptor is contained. With this new representation, a clustering algorithm

is used to group the observations and make it easier to find similarities between data points. To accom-

plish this objective, we split the work into three tasks: generation of the descriptor, sparse subspace

representation and spectral clustering.

4.1 Descriptor

Since the acquisition of data has a low frequency and is not equispaced (as shown in Figure 4.1),

before moving to the next step some pre-processing is needed. To obtain an equispaced set of counts,

the sequence of vehicle count estimations is interpolated using linear, quadratic and cubic methods.

By selecting equispaced values resulting from interpolating the original data, the problem of non-linear

spacing between samples is solved. An example of the result of this operation can be seen in Figure

4.1.

A moving average is then applied to the interpolated data. This will act as a low-pass filter to reduce

short term fluctuations in the counting acquisitions. The objective of this filtering is to remove the systolic

dynamic caused by alternating green and red lights. The averages are obtained using 4.1.

Ai =

∑i+k
j=i−k Ĉj

2k + 1
(4.1)

Where Ai is the average corresponding to the count estimation Ĉi and k is a variable parameter which

defines the size of the subset used in the calculation.

Finally, a re-sampling is performed to obtain the dimensions needed for the next step.
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Figure 4.1: Linear interpolation of Cam 031 acquired data on 24/07/2020

Figure 4.2: Moving average (60min) of Cam 031 interpolated data on 24/07/2020

Each cam descriptor (D) includes every vehicle count of that camera organized by day. A column

contains all the observations of one day and a row contain observations of one specific hour of all days.

The corresponding date and time of the vehicle counts in the descriptor are saved in an analogous

matrix (T ) with the same dimensions, in such a way that the observation Di,j has the associated time in

Ti,j .

Figure 4.3: Daily count descriptor of Cam031
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When reading these descriptors, an option is given to select one or multiple cams. If multiple cam

descriptors are read simultaneously, they are concatenated horizontally to obtain a joint descriptor with

as many columns as the acquired number of days times the number of selected cameras. The number

of rows remains equal to the number of acquisitions in a day.

It is also possible to segment each day’s worth of samples in equal parts. These segments, which

will be called chunks, each contain n◦ of samples in a day/n◦ of segments samples. For example, if one

camera and two chunks are selected (splitting days in half), the descriptor will have n◦ of days × 2

columns, and n◦ of samples in a day/2 rows.

4.2 Sparse Subspace Representation

In this section, we attempt to utilize the self-expressiveness of the data to obtain a sparse representation

of the descriptor. The main idea is to take advantage of the existing similar patterns in traffic and to

represent a section of data as a linear combination of n other sections. To impose sparsity, n must be

a relatively small number. We use a sparse optimization program described in [36]. It consists in a

minimization process which solves the expression 4.2.

min ||C||1 + λe ||E||1 +
λz
2
||Z||2F

s.t. Y = Y C + E + Z, 1TC = 1T , diag(C) = 0

(4.2)

In 4.2, Y is the descriptor, C is the sparse coefficient matrix, E is the sparse error and Z is the noise. C is

a square matrix, with size equal to the number of columns of the descriptor. Its nth column contain the

sparse representation of the data in column Yi. Each coefficient cj in column Ci represents the fraction

of Yj that is used in the reconstruction of Yi. Diag(C) is the diagonal vector of C and is forced to zero to

prevent the solution from being an identity matrix.

Figure 4.4: Top left: Daily count descriptor, Y, of Cam031. Top right: Sparse subspace
representation C, using λe = λz = 1× 10−3. Bottom left: Reconstruction error E. Bottom

right: affinity matrix W (each with its own scale)
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The affinity matrix W, where wij shows the degree of affinity between column Yi and column Yj ,

is calculated as W = C + CT but before proceeding to this calculation, an optional step suggested in

[36] was implemented. This optional step consists in the normalization of each the columns of C using

its corresponding l∞ norm: ci ← ci
||ci||∞ . In this application, as each column of Y corresponds to a

day’s worth of observations for one camera, wi,j is the degree of affinity between day i and day j of the

descriptor. Using the affinity matrix W, it is possible to find connected components in the descriptor Y by

applying a clustering algorithm to it as it already takes the form of a graph. An application example of

the matrices described above can be seen in Figure 4.4.

When observing a specific day, we can check its corresponding row or column in the affinity matrix

to understand which other days are closely related to it as shown in Figure 4.5.

Figure 4.5: Day 13 (Tuesday 04/08/2020, cam031), its reconstruction using related days
and the reconstruction error

We can see that sparse subspace associated with day 13 (04/08/2020) consists of 5 other days which

have a peak in vehicle counts at around the same time but slightly shifted. This shift in time causes

an error to exist right after (positive error) the center of the peak. By summing all these components

multiplied by their reconstruction ratio, we obtain the estimated reconstruction of the original day. This

is shown in Figure 4.6, here, the overall shape of the reconstruction is the same as that of the original

data. As expected, the reconstruction error does have a greater amplitude at the time of the peak.

Figure 4.6: Vehicle count descriptor of Tuesday 04/08/2020 of cam031, its estimated
reconstruction and its error (not including white noise)

21



4.3 Spectral Clustering

To find similarities between days or segments of days, we try to isolate connected components in the

affinity matrix as these represent groups of similar days. But since there is noise in the data, the graph

is fully connected and thus, non-partitionable. To obtain n connected components in the fully connected

graph, we make use of spectral clustering. Spectral clustering is a clustering technique which is most

related to the graph theoretic formulation of grouping. In this formulation, the data is represented as a

weighted, undirected graph where the data points themselves are the nodes, and the edges linking pairs

of nodes are a function of similarity between the nodes. In this specific application, the nodes are days

of vehicle counts. The technique itself consists in utilizing a measure of the quality of data partitions, the

normalized cut (Ncut). This criterion can be minimized when formulated as an eigenvalue problem and

the resulting eigen-vectors can be used to construct good partitions.

When partitioning into two sub-graphs A and B, the normalized cut takes the form 4.3.

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

cut(A,B) =
∑

uεA,vεB

w(u, v)

assoc(A, V ) =
∑

uεA,tεV

w(u, t)

(4.3)

Where V contains all nodes in the graph, so that assoc(A, V ) is the total connection from nodes

in A to all nodes in the graph. In this expression, cut(A,B) is the total weight of the edges removed

when partitioning A from B. The optimal solution is obtained by minimizing minxNcut(x), where x is an

indicator vector, as shown in 4.4.

xi =

1, if i ∈ A

−1, otherwise
(4.4)

Using spectral clustering in the graph (affinity matrix, W) will indicate the partition which minimizes

the weight associated with removing edges to obtain the desired number of clusters. The number of

clusters (k) is manually set and must be chosen in accordance with the problem at hand. In the specific

case of traffic, we show an example where we set k = 2. The results are shown in Figure 4.7. These

results show, for a single camera and using two clusters, an alternating pattern of sets of days attributed

to group 1 followed by another set of days attributed to group 2. All of the days in group 2 appear to have

one common factor: a lower density of traffic. When inspecting the dates of the days in group 2, we find

that most of them are either Saturdays or Sundays. So, it seems that when partitioning a sequence of

days into two clusters, this method mostly groups days by high or low traffic density, which incidentally

also has a correlation with being a working day or a weekend day.
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Figure 4.7: Results of applying spectral clustering to daily count descriptor of Cam031
(60min moving average) using two clusters

4.4 Single Camera Data Analysis

In this chapter we smoothed and formatted data obtained from a neural network’s output to obtain a

daily vehicle count descriptor for one or multiple cameras. We used a moving average to smooth the

data. This filter had a period which varied between 15 minutes, 30 minutes and 60 minutes. We were

able to observe the effects of changing the period of the filter by plotting its output (Figure 4.8), and

since the data was very noisy due to having a small acquisition frequency, we opted to work with a 60

minutes period. These moving averages were re-sampled at double the frequency of the filter, separated

Figure 4.8: Results of applying moving average with period of 15 minutes (on the left) and
60 minutes (on the right) to interpolated data from cam031

in individual days and concatenated to form a vehicle count descriptor. These descriptors contained the

days organized in columns. By presenting the descriptors as images we can visually identify some

patterns, for example, a descriptor having greater traffic density in the afternoon gives the idea that its

corresponding camera is placed in a road used as an exit from the city, and cameras placed in parking

lots will be prone to have greater traffic density up until the beginning of the afternoon (see Figure 4.9).

In addition, the sum over the columns of the descriptor was computed in order to gain more intuitive

information on the patterns along a sequence of days. Having generated the descriptors, we used the

self-expressiveness of the data to represent it using sparse subspaces. The sparse representation of

23



Figure 4.9: Left: Daily vehicle count descriptor of Cam031 (road intersection). Right: Daily
vehicle count descriptor of Cam017 (parking lot), with different scales

the data, a sparse coefficient matrix, contained information on how to reconstruct any day by using a

linear combination of n other days. The sparse error matrix which embodied the reconstruction error (not

including white noise), allowed to identify when the traffic patterns differed substantially from the other

existing samples. With the sparse coefficient matrix, we generate the affinity matrix. Since this matrix

can be regarded as a graph, we applied spectral clustering in order to obtain k connected components in

it. These connected components give us information on which days of the descriptor were most closely

related. The result of applying spectral clustering to the descriptors is the classification of days into one

of k clusters. We can also observe a lower traffic traffic density in the same days in both descriptors of

Figure 4.9. Just like in Section 4.3, when checking the dates of these days, they turn out to correspond

mostly to weekend days. With this information in mind, we plotted the moving average of one camera

clearly identifying the weekends and another plot where the days were identified based on the group

they belonged to, as shown in figure 4.10.

Figure 4.10: Left: Daily vehicle counts descriptors grouped by clustering classification.
Right: Daily vehicle count moving averages, grouped by week days and weekend days

(both from cam031)

By observing the amplitudes of the vehicle count curves, it is clear that weekends do generally tend

to have a lower traffic density, especially at the time of the traffic peak but also in the morning. Here when

using two clusters it seems that spectral clustering uses total traffic density as the key characteristic to

differentiate between clusters. As so, two days which have exceptionally lower traffic density are grouped

together with the weekend days.

24



Another portion of the data was acquired right before and right after the COVID lockdown of 2020

was imposed in Estonia.

Figure 4.11: Vehicle counts of the acquired period, in blue is the original and in red is the
interpolated data obtained from cam005 in March 2020

As can be seen in Figure 4.11, the first two days have a maximum value larger than the following

acquired days. These first two days were acquired whilst the lockdown was not yet imposed, and the

difference in maximum values reflects the change in traffic density caused by that same lockdown. To

better visualize this change, we generated a plot which contains the results of applying a moving average

to two specific days: Wednesday 11/03/2020 and Wednesday 18/03/2020. By superposing the data of

these two days, we hope to determine, for this sample, if the lockdown did in fact cause significant

reduction in traffic density. The results can be seen in Figure 4.12.

Figure 4.12: Daily vehicle counts of Wednesday 11/03/2020 (red) and Wednesday
18/03/2020 (blue) after smoothing with moving average (both from cam005)

What can be observed in Figure 4.12 is that the general shape of the curves is the same but at the
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time of the traffic peaks, the number of vehicles detected is quite different. In fact, the first peak in the red

curve (around 12h00) is non-existent in the blue curve. The larger peak, from around 14h00 to 18h00,

exists in both days and starts and ends at around the same time, but is quite diminished on the curve

corresponding to 18/03/2020. This seems to indicate that even though the overall traffic pattern did not

change much, traffic density was lowered by the lockdown.

We then generate the daily count descriptor to visualize all the data after processing it, the daily sum of

vehicles is also computed to give an additional indication of the variation in traffic density. The descriptor

can be seen in Figure 4.13.

Figure 4.13: Daily vehicle counts descriptor of cam005 acquisition in March 2020 (sum of
vehicles below each column and clustering results on top)

In this dataset, two weekends were captured. But unlike the descriptor generated with data from

August 2020, here (Figure 4.13) weekends are not so distinguishable from weekdays. One of them (22

and 23 of March) can be visually identified but the other (14 and 15 of March) is harder to single out,

mostly because Saturday the 14th has as much traffic density as the other post-lockdown weekdays.

Spectral clustering is applied, with two clusters, to see how this method groups the days included in this

dataset. The results are presented in the same fashion as in 4.10 and can be seen in Figure 4.14.

Figure 4.14: Cam005. Left: Daily vehicle counts descriptors grouped by clustering
classification. Right: Daily vehicle count moving averages, grouped by week days and

weekend days
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Again, some differences can be noted between this figure and its analogous figure from the August

dataset. Weekends are not as clearly separated from weekdays, and even though they are grouped

together (in group 1), so are most of the weekdays. Group 2 seems to be composed of the days with

the highest sum of vehicles (not including 14/03/2020).
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Chapter 5

Application: a Case study of Tallinn

In this chapter we describe the results of the process in the aforementioned chapters. We first indi-

cate how the data was obtained and then results of the two main steps (counting and clustering) are

presented.

5.1 The Cam Network

The dataset used as input for the sequence of steps described in chapters 3 and 4 is composed of a

total 1447577 images of two different time periods. The first one spans from 9 of March to 6 of April

(except 11, 12 and 13 of March) 2020 and comprises 734284 images The second one spans from 23

of August to 17 of September 2020 and includes the remaining 713293 images. In March, images were

acquired from 5:30 A.M. to 5 P.M and in August from 5 A.M to 7:30 P.M. The images are obtained from

video streams of multiple cameras in the city of Tallinn, Estonia.

Figure 5.1: Grid showing cameras in Tallinn

The video feed from these cameras is made available in the city’s own official website [37] where

they are presented in a grid-like manner. In total, around 176 cameras are linked to this website, which
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capture streets, intersections and parking lots all around the city. The feeds are always active and when

a camera is not working or its connection is lost, a gray-scale image with the corresponding warning

replaces the feed. The images provided have a high resolution (1920 by 1080 or 1280 by 720 depending

on the camera) and the refresh rate is that of one image per second. Even though the original resolution

and framework are relatively high, the acquisition forces the resolution to be the same as the input

size for the U-Net described in 3.2 (224 by 224 pixels) and the image download for each camera was

executed once every five minutes.

The download from the website was executed using a python script, more specifically using the

urllib3 [38] library. For each camera, one image was downloaded every five minutes in a nonlinear time

spacing fashion. Every five minutes, a routine was called which generated a random number between 1

and 299, this is the number of seconds to wait before downloading. This way, the download rate of one

image every five minutes was ensured and an uneven acquisition was implemented. It was not possible

to acquire at a faster rate as the source would create a buffer such that, if requests for images were

too frequent, the buffer would simply hold one single image and thus, two image requests submitted at

different times would return the same image. Of the total 176 available cameras, we selected 11 which

are identified on Figure 5.2. We chose 2 cameras of parking lots (Cam017, Cam158), and the rest are

cameras filming road segments. These road segments include streets both close and far from the city

center. Most of these cameras capture street intersections but others cover bifurcations or merging of

streets, and a few others are filming straight patches of road. There is no rule as to whether the camera

is pointing towards or away from the city, and the individual direction of filming for each camera is shown

in Figure 5.2. Unfortunately, two of the selected cameras did no capture images during the period of

March, these were cameras ”cam112” and ”cam158”.

Figure 5.2: Selected cameras for results analysis

One image from each camera is shown in Figure 5.3. These cameras have different points of view

and observe traffic flowing in multiple directions, for example, incoming towards the camera or flowing

away from the camera. We included in our selection cameras located in parking spots. This was done
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with the intention of comparing traffic patterns of road segments and parking lots.

Figure 5.3: Example images obtained from the selected cameras for results analysis

With the acquisition process finished, we end with a selection of eleven different cameras and data

from two distinct time periods (March and August). This data is composed of sequences of images,

obtained at an uneven rate between 8 A.M and 10 P.M or between 8:30 A.M and 8 P.M (local, Eastern

European Time) depending on the period. We now need to process this data to make it usable for its

intended purpose.

5.2 Processing

In this section we present the sequence of steps used to transform the images obtained from the cam-

eras in Tallinn into the sparse subspace representation mentioned in Section 4.2.

The processing of the data comprises 8 main steps. These are inference, obtaining counts from

traffic density maps or regression, interpolating, filtering with moving average, segmentation by date

(each day’s worth of vehicle counts for one camera is represented by an array of vehicle count values)

and sub-sampling, concatenate the multiple days, calculate a sparse subspace representation and,

finally, classification of days using spectral clustering. This sequence of steps can be seen in Figure 5.4.

The starting point for this process is to transform the downloaded images into usable, vehicle counts.

In our approach, this transformation is implemented in two parts. First we transform the image into a

traffic density map. We use a convolutional neural network to complete this task. This neural network

follows the architecture of a U-Net (see 3.2), a widely used convolutional network. The input of the

network are the images downloaded, and the output are their corresponding density maps. These maps

contain information regarding both the location and number of vehicles in the image by representing

them as patches of pixels with value different from zero. And then by summing the value of all of the

pixels in any of these patches, we get the estimated number of vehicles in that patch. This way, we

transform a given image into a datapoint, containing the date of its acquisition, and a value which is the

number of cars in the acquired image.

Next, we make the sequence of datapoints linearly spaced. Because of the way the images were

acquired (random process initiated every five minutes as described in Section 5.1) the samples were
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Figure 5.4: Sequence of steps in the processing of data

Figure 5.5: Example of inference on traffic images for four distinct cameras
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not uniformly spaced. This meant that, when trying to apply a moving average directly to this oddly

distributed data, a 30 minutes interval could contain either 5, 6 or 7 samples, which caused the results

to be completely unreliable. So, to correct this, and to force all fixed size interval to have the same

number of samples, the data was interpolated to obtain an evenly spaced collection of data points. This

interpolation step was tested with three different methods: linear interpolation, quadratic spline and cubic

spline. In some specific cases of poor distribution of datapoints, usually between two samples further

away than usual or right after an abrupt change of curve tendency, both quadratic and cubic splines did

bad approximations, generating values inconsistent with the problem at hand such as estimating vehicle

count values of -10 (see Figure 5.6).

Figure 5.6: Effects of using cubic spline (on the left) and linear spline (on the right) on the same data

Since the collected data has a ”bumpy” nature, with many artifacts and non-linear spacing of samples,

it was prone to this kind of errors. For this reason, we opted for the use of a linear spline interpolation.

Although this method generated a data-curve with many acute angles, it was still more credible that

the results obtained with the other two methods. After using linear spline interpolation to calculate the

interpolating function, we selected a time interval of one minute to re-sample our data. Even though

the original sampling rate had a mean of five minutes, in some extreme cases, two consecutive sam-

ples could be only one minute apart, so selecting a one minute interval should offer a more accurate

representation of the original data.

The results of the interpolation mentioned above were polluted by artifacts caused by the large tem-

poral spacing between sample acquisitions. Additionally, the traffic lights also influence the results of the

acquisition, forming regular spikes in vehicle counts. This systolic pattern represents the difference of a

higher flux of vehicles when a traffic light is green, versus the lower the stopped traffic caused by a red

light. As the patterns we are more interested in are the ones that represent the overall flux of vehicles

over time and not changes occurring within a small temporal window, we opted to apply a low pass

filter to remove the influence of these shorter spanning variations. The chosen method was a moving

average. The moving average can be thought of as a type of low pass filter where we don’t have control

of the bandwidth besides choosing the number of samples. In this problem scenario, this translates as

choosing the bandwidth by controlling the size of the temporal window analyzed. The moving average

consists of selecting n samples, for example samples 0 through n, summing their values and dividing by

the number of samples (see equation 4.1). This results in a single new average, which we placed the

middle of the window. Then, the window is slid one sample forward and the process is repeated. As no
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padding was used, the final number of samples obtained from applying the moving average is smaller

than the number of samples this process started with. In fact, the number of samples after applying

the moving average without padding is the number of samples that come as input, minus the number of

samples contained in the used moving average window. We experimented applying moving averages

with three different window sizes. We used windows of 15 minutes, 30 minutes and 60 minutes. The

different results can be seen in Figure 5.7.

Figure 5.7: Applying a moving average with three different bandwidths to one day of vehicle counts.
The camera shown is cam009 on the 24/07/2020. Top left is the result of using 15 minutes, top right is

using 30 minutes and bottom is using 60 minutes

We chose the filter of 60 minutes as it produced smoother, more readable results. A larger window

could be selected, but the loss of samples must also be a consideration, and using for example a window

of two hours would lead to loosing two hours of samples after applying the moving average.

Then, data is separated by date such that instead of having one long array of data per camera that

contains all of that camera’s datapoints, we have multiple arrays, one for each day of each camera, that

contains the sequence of vehicle counts obtained for that camera on that specific day. The visualization

of the data in this format allows a better comparison of multiple distinct days as we can now plot them

on the same figure, overlapping them. So, we tried plotting, for each camera, all of the acquired days,

correctly identifying the day of the week of each day. The idea was to check if the days of the week had

a static pattern. An example sample of this experiment can be seen in Figure 5.8.

Another test that was performed was to, instead of specifying the day of the week of each day, specify

if a day was a business day or a weekend day. Sample results of this experiment can be seen in figure

5.8.

The following step in the data processing pipeline is to down-sample the data. As having one sample

for every minute leads to a heavy processing load in the following steps, we down-sample the result

of the moving average. The down-sampling rate chosen is half of the size of the window used when
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Figure 5.8: Moving averages segmented in days. On the plot on the left we specify for each day which
day of the week it was captured on. On the plot on the right we specify for each day if was captured on

a workday or weekend day. Both plots were based on cam065’s captures.

calculating the moving average, for example, if a moving average with a window size of 60 minutes was

used, we down-sample it by selecting one sample every 30 minutes. This down-sampling leads to a

signal similar to the one seen in the results of the previous step (see Figure 5.7), the only difference

being, the number of datapoints in the plot. An example can be seen in Figure 5.9.

Figure 5.9: Sampling the results of applying moving average. Using cam 089 on 24/07/2020 after
applying a moving average of 60 minutes. On the left are the results of applying the moving average

and on the right is the sampled result (sampled every 30minutes).

All of the previous steps were implemented using Python3. The plots were generated using Mat-

plotlib’s Pyplot and Numpy. The results were saved in CSV files as matrices of size N by D, where

N is the number of samples in a day, for one camera, and D is the number of days acquired for one

camera. For each individual camera, two distinct matrices (with the same dimensions) were saved, one

containing the vehicle count values, and the other containing the corresponding dates and times.

These CSV files are then read by a Matlab script. This Matlab script will read the data of each

camera as a single matrix instead of reading it as multiple arrays, thus effectively concatenating the

multiple days of vehicle counts horizontally. We call this matrix the daily vehicle counts descriptor of one

camera, see Figure 5.10. Alternatively, multiple matrices from different cameras can be read simultane-

ously, generating a joint daily vehicle count descriptor of two cameras. These joint descriptors are the

equivalent of concatenating two distinct descriptors horizontally. As the data was acquired in two parts

(March and August) and they have different dimensions, they are provided separately and cannot be

read simultaneously. One example of a daily vehicle count descriptor of each of these periods is shown

in Figure 5.10.
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Figure 5.10: Daily vehicle counts descriptor of both acquisition periods (August on top and March at the
bottom) for three cameras: cam 005 on the left, cam 017 (parking lot) in the middle, cam 123 on the

right.

In this figure we can see how less days and less hours in each day were acquired during the acqui-

sition period of March comparatively with August.

The daily vehicle count descriptors are fed to a Matlab script which calculates and returns its sparse

subspace representation C. The subspace representation C is a sparse square matrix of size D by D,

where D is the number of complete days in the read data, equivalent to the number of columns in the

corresponding descriptor. For instance, if for example J cameras are read simultaneously, and the data

of one camera contains K days, then D is J times K. Finally, the affinity matrix W, is calculated by adding

matrix C to its transposed. The affinity matrix can be viewed as graph, thus allowing the application of

spectral clustering. Both matrices C and W are shown in Figure 5.11.

Figure 5.11: On the left: Sparse subspace representation (matrix C) of cam’s 112 August daily count
descriptor. On the right: similarity matrix (matrix W) of cam 112 in August.

Finally, spectral clustering is applied to the similarity matrix W. To run spectral clustering on this graph,

the number of desired clusters is required. The result of this clustering is an array of size K (number of

days) which in each entry contains the id of the cluster in which the day with the corresponding index

was grouped.
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5.3 Data Processing Results

In this section we analyse results of the process of transforming images to daily vehicle count descriptors.

We briefly analyse the system’s counting capabilities. But most of all, we focus on analysing this system’s

capacity of capturing the effects of real life events which might have impact on the overall traffic density

of the city.

The results of the counting process are difficult to analyse as there is no ground truth to compare

them to, so a visual analysis of the images and corresponding density map is needed to understand how

the network performs in this application scenario. Since no kind of domain adaptation to the new point of

view was performed, excellent results are not expected but instead a linear correlation between the real

and estimated number of vehicles is expected. Some examples were created by manually counting the

number of vehicles. We show two examples, one with many vehicles and another with none, captured

by the same camera in Figure 5.12.

Figure 5.12: Example of density maps inferred using U-Net and respective estimation of number of
vehicles (sum of pixel values). On top: image captured by cam 017 on 16/08/2020 with no vehicles. On

bottom: image captured by cam 017 on 14/08/2020 with vehicles.

As expected, there is a considerable error, but the neural net is indeed capable of inferring the

presence vehicles, and a correlation apparently exists between the real number of vehicles in the image

and the number of vehicles estimated by the U-Net.

In the city of Tallinn, the government encourages people to leave their cars in parking lots built around

the city and then use public transportation to move inside the city. This would generate a vehicle count

plot, for a single day, which looks like a plateau: rising in the early hours of the day, staying stable
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throughout the day and declining at the end of the afternoon. An example of a parking camera’s vehicle

count plot can be seen in Figure 5.13.

Figure 5.13: Moving Average of 60min for Cam017 (on the left) and for Cam158 (on the right)
24/07/2020

This plot shows a small increase in the number of vehicles in the morning (the camera started filming

rather late), then a somewhat steady period until the afternoon and a decrease until the end of the

afternoon. In the same figure (Figure 5.13), another example of a day’s worth of vehicle counting by a

parking lot camera can be seen. This second camera (cam158) captured less cars than cam017, but the

pattern remains the same: a somewhat steady number of vehicles and a sudden drop in the afternoon

ending at around the same time.

For cameras in streets and intersections, the plot should be more irregular in the sense that spikes

in the number of vehicles are expected in the morning, lunch time and end of afternoon, when most of

the circulation happens. But since the location of the chosen camera varies, including streets in the city

center, others further away from the center, access roads and highways, the pattern should not forcibly

be the same in all of these. To confer the location of the cameras, see Figure 5.2.

In Figure 5.14 we show the same day captured by cameras in different types of streets.

Even though these three plots do not resemble each other very much at first sight, they still have

some elements in common. For example, all three of these plots seem to have in common a traffic

density spike around 16:00h and another right after 18:00h. The second spike appears at around the

same time as people usually finish working and start their return home. The camera closest to the city

center is the only one out of the three to capture another spike at around 13:00h. This makes sense as

at this time it is more expectable to have movement within the city than traffic flowing out or into the city.

As mentioned in the previous chapter, a considerable difference in traffic density between a working day

and a weekend day was noted. This difference was noted among all of cameras, with some having more

accentuated differences and in other cases, some cameras where distinguishing a working day from a

weekend day was harder. This can be seen in Figure 5.15.

If we look specifically into the images obtained in March, major differences are noted when comparing

the moving averages of days before the quarantine was imposed, and after. The average traffic density

is usually higher before the quarantine. This goes to show the effects of the quarantine were captured

by this process. But again, the differences are mitigated in some cases. Notably, when using a camera
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Figure 5.14: Moving Average of 60min for Cam031 (access street to the center of the city, top left),
Cam065(close to the center of the city, top right) and Cam105 (on Parnu highway, bottom) on

24/07/2020

Figure 5.15: Comparison of workday and weekend day’s moving average for Cam005 (close to the
center of the city, top left), Cam009(Tartu highway, rop right), Cam017 (parking lot, bottom left),

Cam031 (street access to the city center, bottom right) in August
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which already did not capture many vehicles before the quarantine was implemented, the differences

before/after quarantine are not so obvious.

Another way to visualize the processed data is through the use of the daily vehicle count descriptors

(see Section 4.1). Because of the formatting of the data in these descriptors, we can better visualise the

sequence of days and get a better sense of how a day’s overall traffic density changes. An example with

the daily cont descriptors of three cameras for both acquisition periods is shown in Figure 5.16.

Figure 5.16: Daily vehicle counts descriptor of both acquisition periods (August on top and March at the
bottom) for three cameras: cam 005 on the left, cam 017 (parking lot) in the middle, cam 123 on the

right.

It is interesting to see in this figure the same results as in Figure 5.15 but with additional information.

For example, in the period of August, the parking camera shows a steeper difference between workdays

and weekends than the traffic cameras and how it seems that Saturdays usually have ever so slightly

more traffic density than Sundays. Throughout the month, the pattern workday/weekend apparently

remains the same. In the daily vehicle count descriptors of March, we note that the overall traffic density

of a day tends to increase the further it is from the day quarantine was imposed. The shown parking

camera’s descriptor indicates that right before the quarantine there was already a reduction in traffic

density, and here, traffic returns to normal after about a week and a half. In this camera’s daily vehicle

count descriptor (cam017) and in cam005 we also seem to perceive the influence of a weekend in traffic

density, as traffic in two consecutive days is even lower than the traffic during the rest of the captured

quarantine period.

5.4 Sparse Spectral Clustering Results

In this section we analyse the results obtained in the various steps of the sparse subspace clustering

process. We will start by analysing and commenting some examples of sparse subspace representa-

tions, then move on to similarity matrices. At the end of this section we will also review a few clustering
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results. All the example results provided in this Section were obtained using Le = 10−1 and Lz = 10−1.

As was mentioned in Chapter 4 and Section 5.2, the daily vehicle count descriptors of the selected

cameras are subjected to an algorithm which calculates and returns a sparse subspace representation

of the corresponding descriptor. These sparse subspace representation matrices, or matrix C, are or-

ganized by columns. A deeper explanation of these matrices is provided in Section 4.2. To visualize the

matrices C we display them as images with Matlab. We present two matrices C obtained with the daily

vehicle count descriptors of individual cameras in Figure 5.17.

Figure 5.17: Sparse subspace representations (matrix C) of vehicle count descriptors in August. On
the left is camera 005, a street camera. On the right is camera 017, a parking camera. Using different

scales.

We chose a street camera and a parking camera and also drew lines to give a visual indication

of where weeks start and end. These lines are always placed between Sundays and Mondays. The

diagonal was also drawn to make it more evident. Below each column we placed the total number of

cars detected in each day.

If all weeks shared a common pattern, that is, if all Mondays were alike, and Tuesdays all resem-

bled each other, and so on, what we would see here would be the diagonals of the weeks with high

reconstruction ratios, except for the diagonal which is forcibly set to zero. This would be an indication

that every day of the week could be decomposed into a linear combination of every other corresponding

day of the week, i.e Mondays, for example, could be recreated with a linear combination of all the other

captured Mondays. Although these diagonals are not clearly solely populated with high ratio values, we

do see that cells with a high reconstruction ratio do have a slight tendency to be closer to the diagonals.

This may mean that week days which are closer to each, for example a Friday and Thursday even if

not in the same week, have a tendency to resemble each other more than week days which are far

apart. Another thing that is worth noting is the fact that most of the weekends are reconstructed using

almost exclusively other weekends. There are of course a few exceptions but this seems to be a pattern

throughout this period. It is also noteworthy that in the vehicle sums, displayed below each column, we

can clearly notice that weekends have a total sum quite inferior when compared to the workdays.

We also show the sparse subspace representation of the same cameras in March in Figure 5.18.

First of all, since this acquisition was not continuous (there are a few missing days, see Figure 4.13)

the lines drawn may not help identify all of the days of the week but they always help to identify weekends.

Unlike the previous figure, in this one we don’t see weekends being exclusively reconstructed with other
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Figure 5.18: Sparse subspace representations (matrix C) of vehicle count descriptors in March. On the
left is camera 005, a street camera. On the right is camera 017, a parking camera. Using different

scales.

weekends. In camera 005, the first weekend’s Saturday is reconstructed using mostly a Friday from the

second acquired week. The other weekend days do seem to follow the pattern of being reconstructed

with other weekends. As for camera 017, if we look at its descriptor in Figure 5.16, we can see that the

last week is quite different from the others as it contains much more traffic density than the remaining

weeks in this period. This is reflected here in Figure 5.18 as it is reconstructed using almost exclusively

itself.

Next, in Figure 5.19 we show two sparse subspace representations of joint descriptors. The first one

is a joint descriptor of two traffic cameras, and the second is a joint descriptor of a traffic camera and a

parking camera.

Figure 5.19: Sparse subspace representations (matrix C) of joint vehicle count descriptors in August.
On the left is camera 005 and cam031, both street cameras. On the right is camera 005 and camera

017, a street camera and a parking camera. Using different scales in each image.

We drew lines separating the images into quadrants. These lines, drawn at the end of column 26

and row 26, give us an visual indication of which days belong to each camera. For example in the

image on the left, the quadrant which includes columns 1 through 26 and rows from 27 through 52

shows which days from cam031 are used in the reconstruction of the days acquired for cam 005. The

first thing we spot in both images of Figure 5.19 is that two of the quadrants in each seem to contain

all of the nonzero values while the other two are almost empty. This means the days of each camera

are mostly reconstructed with other days from the same camera, maybe because the patterns captured
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by each camera are too distinct from each other. Two examples were given so that we are able to

check if two street cameras influence each other more than a street camera and a parking camera. A

slight difference can be spotted, it seems that the combination of camera 005 and 031 have more inter-

dependency than cameras 005 and 017 as on the bottom left quadrant of the first image, there are still a

considerable amount of non-zero reconstruction ratios. Although the difference exists, it is minimal, and

we can conclude that the traffic patterns captured by the cameras are not very similar in general. The

same happened when trying other camera combinations (not shown here).

The similarity matrices can be regarded as graphs obtained by adding matrix C to itself transposed.

Unlike matrix C, the similarity matrix W is symmetric, such that day i is as similar to day j as day j is to

day i. To be able to establish a comparison with their respective matrices C, we used in Figure 5.20 the

same cameras as we used in Figures 5.17, 5.18 and 5.19.

Figure 5.20: Similarity matrices of camera 005 (on the left), a street camera, and camera 017 (on the
right), a parking camera, in August.

These similarity matrices resemble the sparse subspace representations shown in Figure 5.17 with

the exception that since now the sum over a column is not restricted to 1. Overall the same comments

that were done to that figure can be made to this figure. That is, weekends are mostly similar to other

weekends and in general, the closer two days are within a week, the more similar they seem to be.

The similarity matrices for these two cameras in March can be seen in Figure 5.21.

Figure 5.21: Similarity matrices of camera 005 (on the left), a street camera, and camera 017 (on the
right), a parking camera, in March.

Although we expected to see a strong similarity between the first two days as these were the only
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to be captured before the quarantine was put into effect, but this is not happens. These two days, a

Tuesday and a Wednesday, are most similar to a Thursday and a Wednesday respectively.

Finally, in Figure 5.22, we show similarity matrices corresponding to the sparse subspace represen-

tations shown in Figure 5.19.

Figure 5.22: Joint similarity matrix (matrix W) of pairs of cameras in August. On the left is camera 005
and camera 017, a street camera and a parking camera. On the right is camera 005 and cam031, both

street cameras. Using different scales in each image.

We confirm in this figure the conclusions made in Figure 5.19, the two street cameras are more

similar with each other than a street camera and a parking camera.

To show some results of reconstructions, we created plots where we show for randomly selected

days in a few daily vehicle count descriptors, the two days which are most similar to the selected one

and the reconstruction error. With this plot we hope to understand if the days which are most similar do

indeed have similar vehicle count plots, and if the reconstruction error reflects their similarity.

Figure 5.23: Plotting camera 031’s vehicle counts. More specifically, day number 26 and its two most
similar days. Below is the reconstruction error

In the example shown in Figure 5.23, the two most similar days (day 20, a Monday and day 21, a

Tuesday) follow the same trend as the selected day (day 26, a Monday), this is a good example of three

distinct days having the same base traffic density pattern, and thus, the reconstruction error is zero at

all times. The slight differences which may exist in the reconstruction are considered white noise. But

this is not always the case, and to showcase what happens when a day’s pattern is too different from all
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the others we have Figure 5.24.

Figure 5.24: Plotting camera 031’s vehicle counts. More specifically, day number 13 and its two most
similar days. Below is the reconstruction error

In this figure the selected day, day 13, corresponds to Tuesday the 4th of August and its two most

similar days are Wednesday the 5th of August and Monday 3rd of August respectively. This Tuesday has

an unusually high peak of traffic density which is not matched by its most similar days. As such, when

reconstructing it, a reconstruction error exists at the same time as the peak.

Finally, since the classification results are essentially arrays containing the group of each day, to

analyze the results of the spectral clustering, we proceeded to plot all the days in each descriptor and

attributing a color in the plot for each group. As spectral clustering requires us to select the target number

of clusters, we started by choosing two clusters, and so, we have two colors in each plot. Additionally,

for visualization purposes, we plot the average value of each group. An example of this kind of plot can

be seen in Figure 5.25.

In this figure, we applied spectral clustering to the similarity matrix obtained from the vehicle count

descriptor. The similarity matrix used to obtain this classification is the image on the left showed in Figure

5.20. The first thing we notice is that the two groups seem to be mostly separated by the amplitude of

the curves: the red group has the same overall shape as the blue group but generally higher vehicle

count values. This is corroborated by the averages plot. Both averages plots have vaguely the same

appearance but one has higher vehicle counts than the other. This is an indication that spectral clustering

mostly classified based on daily vehicle sum. So if we go back to Figure 5.20, where we see the sums

at the bottom, we can already get an idea of how the days will be classified. Another interesting thing

is that in both groups averages we can see a sharp decline at around the same time, which in reality

corresponds to 18:00h (see Figure 5.16). When comparing the plot shown in Figure 5.16 with the one

shown in Figure 5.25, we can spot similarities. Since in general the days with less traffic correspond to

weekends, it seems that this classification ends up grouping the days into workdays and weekends, with

some exceptions as other workdays days with less traffic density will be grouped together with weekends

and weekends with higher traffic density will be grouped with the other workdays.

Another plot is shown in Figure 5.26 where we show the results of spectral clustering applied to the
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Figure 5.25: Plotting camera 005’s vehicle counts in August. Using classification obtained from spectral
clustering.

joint similarity matrix of camera 005 and camera 031 presented in Figure 5.22.

Similarly to Figure 5.25, it seems days were mostly classified based on the amplitude of the curve,

which corresponds to the number of vehicles detected by each camera. When we compare the number

of vehicles detected by each of the two cameras used here, it is clear that one of them, camera 031,

detected more vehicles than camera 005. So, confirming the reasoning of the comments made about

Figure 5.19, we expect this day classification to be based mostly on which camera it belonged to.

To help understand which days fell into each group, we show again the vehicle count descriptor, but

instead of having the sum of vehicles below each column, we show the group into which that day was

classified. This similarity matrix is the same as the image on the right presented in Figure 5.22.

What this figure shows is that most of the days obtained from camera 005 are classified into group 2,

and most of the days from camera 031 are classified into group 1. The exceptions seem to be days with

exceptionally high or low vehicle sum in comparison with the rest of the acquisition of their respective

camera. For instance, in camera 031, weekends were classified into group 2.
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Figure 5.26: Plotting camera 005 and camera 031’s vehicle counts in August. Using classification
obtained from spectral clustering.

Figure 5.27: Plotting camera 005 and camera 031’s similarity matrix in August. Using classification
obtained from spectral clustering presented below each column.
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Chapter 6

Conclusions

In this chapter we present the major achievements attained in this work and a few ideas for the future

which would help refine the results of the present work.

6.1 Achievements

In this work, we managed to build a pipeline which transforms a sequence of traffic images into vehicle

counts and propose a classification of that same sequence based on traffic patterns. We achieved this

by first transforming each image to an estimate of the number vehicles contained in it through the use of

a neural network. Then a pre-processing step was used to make these vehicle counts usable. The pro-

cessed vehicle counts were used in an optimization program which, based on the self-expressiveness

of the data, calculates a sparse subspace representation of the data. This is achieved by expressing

each time segment of vehicle counts as a sparse linear combination of other time segments, thus, every

segment can be reconstructed using the others. The sparse subspace representation itself is the col-

lection of all the ratios used in the linear combination. In our work, the sparse subspace representation

consists of a 2-D matrix of size N ×N where N is the number of segments of image acquisition that is

under analysis. Using the sparse subspace representation it is possible to obtain the so-called similarity

matrix. A similarity matrix is a symmetric matrix which establishes degrees of similarity between our

acquisition time segments. With such a tool, we can obtain an estimate of traffic similarity between,

for example, two arbitrary days, in a principled manner. The similarity matrix can also be viewed as

an undirected graph, where each node is a time segment, and the similarity value between two days

is the weight of the edge connecting those two nodes. Such a representation opens the possibility of

applying spectral clustering to the data. At the end of all these steps, we can effectively say that we are

grouping days of traffic images based on a notion of similarity. As a byproduct, we also define a method

of describing the traffic pattern captured by a camera in a time segment as a linear combination of other

time segments of the same dimensions. Since not all time can be correctly reconstructed with a linear

combination of others, the error is stored in a sparse error matrix. As this matrix captures events which

were not previously observed, it could serve the purpose of detecting anomalies in traffic patterns.
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6.2 Future Work

This work is open for further development in most of its parts, namely the dataset, the estimation of

the number of vehicles in a traffic image, the pre-processing which precedes the Sparse Subspace

Clustering algorithm and the clustering method.

The dataset employed in the case-study was relatively small, it comprised a total of forty complete

days and included the school holiday season. This work could benefit from a larger dataset which also

included acquisition during non-holiday or quarantine periods, although the latter is interesting in on its

own. An dataset obtained during a regular working week could serve as a baseline for comparison with

other acquired periods. The time interval between sample images could also be shorter which would

yield more accurate information regarding traffic patterns and make the data smoother.

As was mentioned in Section 5.3, no domain adaptation was used in our neural network which was

trained on different cameras than the ones used in the case-study. This meant that although the current

method produced interesting results, these were populated with white noise which led to the need for

additional pre-processing. Results could be improved if some form of domain adaptation was used or

for example if the network had been trained on the same cameras that acquired the dataset in Chapter

5.

Further pre-processing could be implemented to allow a better comparison of traffic patterns. Al-

though Sparse Subspace Clustering is invariant to scaling, we felt that the results had a tendency to

classify days by total volume of traffic. This may be due to the fact that the shape of the vehicle count

curve is indeed different, but it could be interesting to be able to group together days which have spikes

in the same time-frame, even if the spikes differ in amplitude or duration.

Another point that could be improved in the pre-processing would be to make the process more invari-

able to small time-shifts. The results of the process as-is are very sensitive to time, if two days are

exactly the same but shifted by thirty minutes, then their similarity metric should be close to zero as it

is impossible to reconstruct the first one with the second one without correcting the time shift. Since

traffic is susceptible to these changes in the time domain, it is possible that this process is not consider-

ing important similarities due to time shifts. Accounting for this possibility could make the results more

consistent and the process more robust.

Finally, other clustering algorithms can be tested and their results compared in order to understand

the benefits and shortcomings of each of them in this specific scenario.
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